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Abstract

Objective: We aimed to reveal the role of structural and functional alterations

of cingulate gyrus in early cognitive impairment in Type 2 diabetes mellitus

(T2DM) patients. Methods: Fifty-six T2DM patients and 60 healthy controls

(HCs) underwent a neuropsychological assessment and sagittal three-

dimensional T1-weighted and resting-state functional MRI. Differences in the

cortical thickness of the cingulate cortex and the functional connectivity (FC)

of the nine subregions of the cingulate gyrus and the whole brain were com-

pared between T2DM patients and HCs. Correlation analysis was performed

between cortex thickness and FC and the participants’ clinical/cognitive vari-

ables. Results: The cortical thickness of the cingulate gyrus was not significantly

different between T2DM patients and HCs. However, the T2DM patients

showed significantly lower FC between the pregenual ACC (pACC) and the

bilateral hippocampus, significantly higher FC between the pACC and bilateral

lateral prefrontal cortex (LPFC) and left precentral gyrus, and significantly

lower FC between the retrosplenial cortex (RSC) and right cerebellar Crus I.

The FC between the pACC and the left hippocampus was negatively correlated

with the FC between the pACC and LPFC (r = �0.306, p = 0.022). Interpreta-

tion: The pACC and the RSC show dysfunctional connectivity before the

appearance of structural abnormalities in T2DM patients. Abnormal FC of the

pACC with the bilateral hippocampus and LPFC may imply a neural compen-

satory mechanism for memory function. These findings provide valuable infor-

mation and new directions for possible interventions for the T2DM-related

cognitive impairment.

Introduction

Type 2 diabetes mellitus (T2DM) has become one of the

most common chronic metabolic diseases in the world,1

and cognitive dysfunction is being increasingly recognized

as a common complication and comorbidity of T2DM.2

Hyperglycemia and insulin resistance results in a neuro-

degenerative cascade in the central nervous system, by

increasing advanced glycation end-products, oxidative

stress, Ab deposition, and vascular endothelial cell dam-

age, which reduce cognitive reserve and cause vascular

cognitive impairment.3,4 Cognitive impairment is a com-

plex and progressive process,5 and slight cognitive decline

may be compensated for by other brain regions and

networks, allowing some cognitive units to remain rela-

tively normal in clinical observations.6 However, the onset

of mild cognitive impairment (MCI) increases the proba-

bility of probability of progression to dementia,7 which

can severely affect patients’ self-management ability and

accelerate disease progression. Therefore, exploration of

the neuroimaging characteristics of early-stage cognitive

impairment in T2DM patients may reveal potential clini-

cal therapeutic targets to prevent or delay the occurrence

and development of cognitive impairment in T2DM.

A large number of previous studies8–11 have shown that

T2DM patients without MCI have functional abnormali-

ties in various cognitive units, including memory, execu-

tive function, and information processing speed, but the
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neural mechanisms underlying these abnormalities remain

unclear. Cognitive impairment is closely related to struc-

tural abnormalities and disorders of functional connectiv-

ity (FC) in key regions responsible for this function.12–14

The cingulate cortex resides within the medial surface of

the cerebral hemisphere and is perhaps most well known

as being part of the limbic system. It seems to play a key

role in multiple cognitive functions15,16 and is often

involved in MCI.17,18 Traditionally, based on integrated

neurobiological assessments, the cingulate gyrus was theo-

retically divided into four subregions, namely, the ante-

rior cingulate cortex (ACC), midcingulate cortex (MCC),

posterior cingulate cortex (PCC), and the retrosplenial

cortex (RSC).19 The ACC plays an important role in

affective evaluation, memory, and attention;20–22 the

MCC is mainly involved in motor control and executive

function23; the PCC appears to be more involved in self-

reflection and autobiographical memories;24 and the RSC

is mainly involved in sensory, motor, and spatial

cognition.25 Previous studies26,27 have identified the cin-

gulate gyrus and hippocampus are the most vulnerable

regions at the pre-MCI stage (subjective cognitive impair-

ment), and some scholars28 have suggested that structural

and functional abnormalities in these two regions may be

the neural basis for the cognitive symptoms of pre-MCI

stage. Multiple studies29,30 have identified hippocampal

white matter disruptions and gray matter volume atrophy

in T2DM patients without MCI, as well as reduced FC

with multiple regions in whole brain. Although the cingu-

late gyrus shows obvious heterogeneity of structure and

function, very few studies have comprehensively revealed

the characteristics of structural and functional changes of

the cingulate gyrus in T2DM patients without MCI.

Previous neuroimaging studies on T2DM have shown

that patients without MCI have reduced gray matter vol-

ume in the ACC and PCC in comparison with healthy

controls (HCs),31 while other researchers have reported

an increased density of short-range functional connections

in the MCC and precuneus32 and decreased nodal

betweenness in the PCC.33 Sun et al. found that reduced

FC of the hippocampus with the ACC and frontal cortex

may serve as an early biomarker for cognitive function-

related vulnerabilities in T2DM patients.29 These studies

suggest that T2DM patients show abnormalities in the

structure and function of the cingulate gyrus, especially

the ACC and PCC, before the onset of clinically measur-

able cognitive impairment. Cheng et al. evaluated ROI-

based FC to identify the dysfunctional connections

between the PCC and the right superior frontal gyrus,

angular gyrus, and middle temporal gyrus in T2DM

patients without MCI and correlated the findings with

glycosylated hemoglobin (HbA1c) levels and diabetes

duration.34 However, different subregions of the cingulate

cortex such as ACC, dorsal cingulate cortex, and PCC are

the core brain regions of the dorsal attention network,

salience network, and default mode network, respectively,

and dysfunctions of these networks can lead to impair-

ment of attention, memory and other cognitive

functions.35,36 Therefore, elucidating the structural and

functional alterations in different subregions of the cingu-

late gyrus can reveal the neurological features of early

cognitive impairment associated with T2DM from differ-

ent perspectives.

The borders of the four subregional models of cingulate

gyrus are defined on the basis of anatomical markers;16

however, the FC patterns of the different subregions may

not be entirely dependent on structural features, especially

when a subregion includes multiple Brodmann areas. Yu

et al. further divided the cingulate gyrus into nine subre-

gions and found that each subregion had specific correla-

tions and anticorrelations with cognitive, emotional,

motor, and other brain networks,37 providing a theoreti-

cal basis for further exploration of the FC of different

subgroups of the cingulate gyrus in T2DM patients.

Therefore, this study is the first to explore the FC pat-

terns of different subregions of the cingulate gyrus and to

characterize the cortical thickness changes in the cingulate

gyrus in T2DM patients without MCI. We hope that the

findings will reveal the role of the cingulate gyrus in early

cognitive impairment in T2DM from both functional and

structural aspects. We also speculate that the structure

and FC of the ACC and PCC, which are closely related to

cognitive function, show abnormal changes in T2DM,

and that these changes are related to neuropsychological

scores.

Materials and Methods

Participants

The study population included 59 patients with T2DM

who presented at the Endocrinology Department of

Shaanxi Provincial People’s Hospital from May 2018 to

October 2022 and 62 HCs who underwent evaluations at

the health examination center of our hospital. All partici-

pants were aged 45–70 years, right-handed, and had at

least 6 years of education. The Mini-Mental State Exami-

nation (MMSE) score ≥ 27; and the Montreal Cognitive

Assessment (MoCA) score ≥ 26. The inclusion criteria for

the HC group were as follows: no symptoms of T2DM;

fasting blood glucose (FBG) concentration of <7.0 mmol/

L; glycated hemoglobin (HbA1c) of <6.0%. T2DM was

diagnosed in accordance with the 2014 American Diabetes

Association diagnostic criteria, and patients with T2DM

were receiving stable therapy (diet, oral medications, and/

or insulin).
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Exclusion criteria for all subjects (T2DM and HC) were

as follows: severe claustrophobia or contraindications to

MRI; Parkinson’s disease, alcoholism, major depression,

epilepsy, brain injury, or other neurological or psychiatric

disorders; or any other systemic disease. In addition,

T2DM patients with a history of hypoglycemia (blood

glucose concentration <3.9 mmol/L) or hyperglycemia

(blood glucose concentration > 33.3 mmol/L) will also be

excluded.

On the day of the scan, participants arrived at the

department for MRI scans after dinner at 6:30–7:00 PM

and underwent blood glucose control in accordance with

their doctor’s instructions. The MRI scans were obtained

after an interval of approximately 30 min, during which

the participants underwent a structured clinical interview

and a series of psychological tests. The test procedure and

scan time were the same for HCs and patients with

T2DM. However, to ensure relatively stable blood glucose

levels when the participants completed the examination,

only one participant underwent scans each day. All partic-

ipants remained awake during the scan and did not expe-

rience discomfort. This study was approved by the ethics

committee of Shaanxi Provincial People’s Hospital, and

all participants provided written informed consent. All

methods were performed in accordance with the relevant

guidelines and regulations of the Declaration of Helsinki.

Clinical data collection and
neuropsychological testing

The participants’ medical history and clinical data were

obtained from medical records and questionnaires, and

included data for blood pressure, height, weight, and

body mass index (BMI). The HbA1c, fasting blood glu-

cose (FBG), triglyceride (TG), total cholesterol (TC), and

low-density lipoprotein cholesterol (LDL-C) levels were

measured by standard laboratory tests. The participants’

mental status and cognitive condition were evaluated

using a series of neuropsychological tests, including the

MMSE and MoCA to assess general cognitive function;

the Color Trails Test part 1 and part 2 (CTT-1 and CTT-

2) to test attention and executive functions; the Clock-

Drawing Test (CDT) to evaluate visuospatial skills; and

the total immediate recall and delayed recall scores in the

Rey Auditory Verbal Learning Test (RAVLT) for assessing

memory function. Processing speed was evaluated using

the Symbol Digit Modalities Test (SDMT). All neuropsy-

chological tests were administered by a psychiatrist with

at least 5 years of experience. All participants completed

the full battery of neuropsychological tests, except 12 HCs

who did not participate in the RAVLT and SDMT tests.

Lacunar infarcts and white matter hyperintensity

(WMH) on fluid-attenuated inversion recovery (FLAIR)

images were quantified using an age-related white matter

change scale38 with a single-blind method, and partici-

pants with ratings >2 were excluded.

Image acquisition

MRI scans were acquired using a 3.0T MR scanner (Inge-

nia, Philips Healthcare, The Netherlands) with a 16-

channel phased-array head coil. Routine T2-weighted and

FLAIR sequences were used to exclude visible brain lesions.

Sagittal 3-dimensional T1-weighted imaging (T1WI) was

performed using a fast spoiled gradient echo sequence; rep-

etition time (TR), echo time (TE), flip angle (FA), field of

view (FOV), matrix, slice thickness, and the number of

slices were 7.5 ms, 3.5 ms, 8°, 250 mm 9 250 mm,

256 9 256, 0.55 mm (no gap), and 328, respectively.

Resting-state functional MRI (rs-fMRI) images were

acquired using a gradient echo planar sequence; TR, TE,

FA, FOV, matrix, the number of slices, slice thickness, and

the number of volumes acquired in each scan were

2000 ms, 30 ms, 90°, 230 mm 9 230 mm, 128 9 128, 34,

4 mm (no gap), and 200, respectively, with axial inter-

leaved acquisition. The participants were instructed to close

their eyes and remain awake throughout the scan.

Processing of structural MRI

T1-weighted structural images were processed using the

Computational Anatomy Toolbox 12 (CAT12: http://

www.neuro.uni-jena.de/cat/) software for SPM12 in

MATLAB. The cortical thickness estimation in CAT12 is

performed automatically using a projection-based thick-

ness method39 with the following steps: automatic seg-

mentation of the images to gray matter, white matter,

and cerebrospinal fluid; affine registration to a Montreal

Neurological Institute (MNI) template space; and non-

linear deformation. Then, thickness estimation was per-

formed automatically in CAT12, which included

calculating the white matter distance, projecting the local

maxima, topological correction, spherical mapping, and

spherical registration. Finally, the structural images were

smoothed with a 15-mm FWHM Gaussian kernel.

Preprocessing of resting-state fMRI data

The DPABI (http://rfmri.org/dpabi/) software package

was used to preprocess rs-fMRI data.40 After discarding

the first 10 time points to ensure a stable magnetic field,

the remaining 190 time points were subjected to slice-

timing and realignment of head motion correction. Par-

ticipants showing head motion >1.5 mm and/or transla-

tion >1.5° rotations were excluded, and the effect of high-

head motion was reduced using the scrubbing method.41
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The framewise displacement (FD) was calculated, and the

FD threshold for bad volumes was set at 0.2 mm. Bad

volumes with FD >0.2 mm along with one forward and

two back volumes of the bad volumes were scrubbed.

Next, each bad volume was modeled as a regressor in the

model regression,42 and the images were normalized to

the standard MNI space with a resampling voxel size of

3 mm 9 3 mm 9 3 mm. We also regressed out 24 head

motion parameters, the linear trend signal, and the cere-

brospinal fluid and white matter signals. Finally, the effect

of physiological noise was regressed using a temporal-

band filter (0.01–0.08 Hz).

Functional connectivity analysis

The cingulate cortex was divided into nine regions of

interest (ROIs) according to a previous study,37 and each

ROI was manually defined on the ch2bet structural tem-

plate with the MRIcron software (www.mricron.com).

ROI 1 represented the subgenual ACC (Area 25); ROI 2

and ROI 3 represented the posterior (Area 24) and ante-

rior (Area 32) parts of the pregenual ACC (pACC),

respectively; ROI 4 and ROI 5 represented the inferior

(Area 24) and superior (Area 32) parts of the anterior

MCC, respectively; ROI 6 represented the posterior MCC

(Area 24); ROI 7 represented the dorsal PCC (Areas 23,

31); ROI 8 represents the ventral PCC (Areas 23, 31); and

ROI 9 represented the RSC (Areas 29 and 30). Then, all

ROIs (Fig. 1) were extracted for voxel-wise FC analyses.

For each participant, the mean time series were

extracted for each ROI, and correlations were calculated

between each ROI and every other voxel within the brain

to obtain FC maps. These FC maps were converted to z-

score maps using Fisher’s z transformation to improve

normality. Then a two-sample t-test was performed to

investigate the regions showing significant differences in

zFC between two groups, with BMI values as covariates

(GRF-corrected p < 0.001, cluster level p < 0.05).

To investigate the correlations between zFCs of the cin-

gulate subregions with significant group differences and

clinical variables, we extracted the average zFC values and

performed partial correlations (Bonferroni-corrected,

p < 0.05) between the zFC values and clinical variables,

with BMI values as covariates.

Statistical analyses

SPSS Statistics version 24 (IBM Corporation, Armonk,

NY, United States) was used to perform statistical ana-

lyses. Group differences in normally distributed variables

were detected using independent-sample t-tests, while

non-normally distributed variables were evaluated using

the Mann–Whitney U-test. Group differences in sex were

assessed using the chi-squared (v2) test. p-values less than
0.05 indicated statistical significance.

Statistical analysis of the cortical thickness was per-

formed using two-sample t-tests with BMI values as cov-

ariates. The threshold was set at a significance level of

p < 0.05 and was family-wise error (FWE)-corrected for

multiple comparisons. For zFCs of the cingulate subre-

gions, two-sample t-test were performed to investigate the

regions with significant differences between two groups,

with BMI values as covariates (voxel level p < 0.001, clus-

ter level p < 0.05, GRF-corrected).

Figure 1. ROIs of the cingulate subregions. ROIs of each side of the cingulate cortex are shown on 10 sagittal anatomical images of the ch2bet

template. The positive values (1, 3, 5, 7, 9) of the x-axis coordinates represent the right hemisphere, while the negative values (�1, �3, �5, �7,

�9) denote the left hemisphere. Each color represents a ROI, which is labeled in the figure.

2308 ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Functional Connectivity in T2DM D. Zhang et al.

http://www.mricron.com


To investigate the correlations between zFCs of the cin-

gulate subregions with significant group differences and

clinical/cognitive variables, we extracted the average zFC

values and performed partial correlations (Bonferroni-

corrected, p < 0.05) between the zFC values and clinical/

cognitive variables, with BMI values as covariates.

Results

Clinical and neuropsychological data

Five participants were excluded from the final statistical

analysis; one T2DM patient was excluded for excessive

motion, and four participants (two with T2DM and two

HCs) were excluded for a WMH score >2. A total of 56

patients with T2DM and 60 HCs were enrolled in the

study. The demographic, clinical, and neuropsychological

data of the two groups are presented in Table 1. The two

groups showed no significant differences in age, sex, edu-

cation level, blood pressure, TG concentration, TC con-

centration, LDL-C concentration, CTT-2, MMSE, MoCA,

CDT, RAVLT immediate/delayed, and SDMT score

(p > 0.05). However, the BMI and CTT-1 score were

higher in the T2DM group than in the control group (all

p < 0.05). In addition, the T2DM group showed higher

FBG and HbA1c levels than the control group (all

p < 0.001). The T2DM group included 27 patients with

no complications and 29 patients with complications such

as nephropathy, peripheral neuropathy, and retinopathy

(Table S1).

Between-group differences in cingulate
cortex thickness and subregion FC

After controlling for BMI (p < 0.05), the cortical thick-

ness of the cingulate gyrus was not significantly different

between T2DM patients and HCs. However, in compari-

son with HCs, patients with T2DM showed significantly

reduced FC between the pACC and the bilateral hippo-

campus, but had significantly higher FC between the

pACC and bilateral lateral prefrontal cortex (LPFC) and

left precentral gyrus (p < 0.05) (Fig. 2A, Table 2). In

addition, the T2DM group showed significantly lower FC

between the RSC and right cerebellar Crus I (p < 0.05)

(Fig. 2B, Table 2). Furthermore, to confirm that the

increased FC of the pACC and left precentral gyrus in the

Table 1. Demographic, clinical, and neuropsychological characteristics of the participants.

Variable T2DM patients (n = 56) HC (n = 60) t/v2 value p-value

Sex (male/female) 42/14 38/22 1.842 0.175#

Age (years) 52.89 � 10.28 54.3 5 � 6.05 �0.937 0.351

Education (years) 14.32 � 2.24 13.81 � 3.62 0.895 0.373

Duration (years) 7.37 � 5.69 – – 0

Systolic BP (mmHg) 125.92 � 16.93 123.71 � 11.51 0.827 0.410

Diastolic BP (mmHg) 79.42 � 10.20 79.53 � 8.91 �0.059 0.953

BMI (kg/m2) 27.63 � 9.00 25.75 � 3.05 2.546 0.012*

FBG (mmol/L) 8.32 � 3.13 4.16 � 2.06 8.504 <0.001*

HbA1c (%) 8.07 � 2.04 5.29 � 1.32 8.755 <0.001*

TG (mmol/L) 2.43 � 1.63 1.80 � 1.08 1.633 0.105

TC (mmol/L) 4.33 � 1.44 4.30 � 1.17 0.123 0.903

LDL-C (mmol/L) 2.62 � 0.90 2.65 � 0.82 �0.191 0.849

CTT-1 74.98 � 25.54 66.15 � 16.96 2.207 0.029*

CTT-2 151.89 � 48.47 136.29 � 55.83 1.632 0.105

MMSE 29.05 � 0.94 28.86 � 1.52 0.788 0.432

MoCA 27.41 � 1.35 27.60 � 1.21 �0.828 0.409

CDT 28.16 � 2.98 27.95 � 2.14 0.440 0.661

RAVLT immediate 43.34 � 6.70 44.85 � 8.63 �0.788 0.433

RAVLT delay 8.38 � 24.83 9.14 � 3.07 �1.064 0.290

SDMT 45.72 � 12.97 48.19 � 7.01 �0.907 0.367

Normally distributed variables are presented as mean � standard deviation, and variables that are non-normally distributed are presented as

median (minimum, maximum).

BMI, body mass index; CDT, Clock-Drawing Test; CTT-1, Color Trails Test part 1; CTT-2, Color Trails Test part 2; FBG, fasting blood glucose;

HbA1c, glycated hemoglobin; HC, healthy control; LDL-C, low-density lipoprotein cholesterol; MMSE, Mini-Mental State Examination; MoCA,

Montreal Cognitive Assessment; RAVLT: Rey Auditory Verbal Learning Test; SDMT: Symbol Digit Modalities Test; T2DM, type 2 diabetes mellitus;

TC, total cholesterol; TG, triglyceride.
#p for the v2 test.

*p < 0.05.
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T2DM group may be caused by diabetic peripheral neu-

ropathy (DPN) in this study, we compared the difference

between the FC of the pACC and the whole brain in

T2DM patients with and without DPN. The results

showed that in comparison with T2DM patients without

DPN, those with DPN showed increased FC between

PACC and the left precentral gyrus/middle frontal gyrus

(BA6/9) and the bilateral supplementary motor area/left

superior frontal gyrus (BA6/8) (Table S2 and Fig. S1). No

other regions with abnormal FC were observed in the

groups.

Correlation between the FC and clinical/
cognitive variables

After controlling for BMI (p < 0.05), the FC between the

pACC and the left hippocampus was negatively correlated

with the CTT-2 score (r = �0.410, p = 0.002) in T2DM

patients, after Bonferroni correction for p (Fig. 3A). The

FC showed no significant correlations with other clinical/

cognitive variables in both T2DM and HC groups. More-

over, the FC between the pACC and the left hippocampus

was negatively correlated with the FC between the pACC

and left LPFC (r = �0.306, p = 0.022) (Fig. 3B) in

T2DM patients, whereas this correlation did not exist

in HCs.

Discussion

This study investigated the change characteristics in cin-

gulate cortex thickness and the patterns of altered FC in

different subregions of the cingulate gyrus in T2DM

patients. The results revealed that T2DM patients without

clinically measurable cognitive impairment still had dis-

rupted FC between subregions of the cingulate gyrus and

multiple brain regions before showing structural alter-

ations. Although structural changes underlie functional

brain abnormalities, functional abnormalities often pre-

cede structural damage, and brain structural changes may

not be evident in the early stages of functional impair-

ment in several neurodegenerative diseases.43,44 Notably,

this study found that the FC values of the pregenual ACC

and the left hippocampus were negatively correlated with

the FC values of the pregenual ACC and the left LPFC,

indicating the presence of effective compensatory mecha-

nisms to counteract the early slight cognitive impairment

in T2DM patients without MCI.

Long-term memory functions are categorized into

encoding, consolidation and retrieval, which coordinate

with each other to achieve long-term memory. ROI 3

(pACC, Area 32) plays a crucial role in memory consoli-

dation; it links neocortical representational areas in long-

Figure 2. Resting-state FC differences in the cingulate subgroups between the T2DM and HC groups (voxel level, p < 0.001; cluster level,

p < 0.05; GRF-corrected). (A) Brain regions with differential FCs of the pACC in patients with T2DM and HCs. (B) Reduced FC of the RSC in

T2DM patients in comparison with HCs. Warm (cold) color indicates significantly increased (decreased) FC.

Table 2. Abnormal FC of the cingulate subregions in the patients

with T2DM compared to the HC group.

Brain regions

Peak MNI
Cluster

size BA T-valueX Y Z

ROI 3

Hippocampus_R 36 �24 �15 54 20 �4.5344

Hippocampus_L �33 �24 15 78 20 �5.4763

LPFC_L �12 39 6 294 10/

46

5.2996

LPFC_R 33 51 9 102 10 4.8333

Precentral_L �33 6 48 135 6 4.4569

ROI 9

Cerebellum_Crus1_R 45 �57 �30 158 - �4.9117

BA, Brodmann area; L, left; LPFC, lateral prefrontal cortex; MNI, Mon-

treal Neurological Institute; R, right; ROI, region of interest.
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term memory and suppresses irrelevant representations in

the limbic system.45 The hippocampus has long been

established as playing important roles in memory encod-

ing and retrieval,46 and the ACC projection has been sug-

gested to have direct top-down control over the

hippocampal memory processing.47 A recent animal

experiment showed that synaptic plasticity in the ACC

occurred 1 day after learning, which most likely reflects a

neural mechanism by which memory is transferred from

the hippocampus to the ACC to achieve memory

consolidation.48 Therefore, we speculated that the reduced

FC between the pACC and hippocampus may reflect the

impaired pACC-hippocampal memory pathway in

patients with T2DM. In addition, this study also found

that reduced FC of the pregenual ACC and left hippo-

campus was negatively correlated with the CTT-2 score,

suggesting that disturbed FC between the pregenual ACC

and left hippocampus is associated with worse executive

function in T2DM patients. Executive function is closely

related to memory,49 and executive function can predict

the validity of subjective memory complaints and working

memory function.50,51 This study showed a trend of sig-

nificant differences in the CTT-2 scores between T2DM

patients and HCs and imply a slight alteration of memory

function in T2DM patients.

Although core brain regions play key roles in cognitive

function, cognitive processes actually require the coopera-

tion of multiple brain regions.52–54 In meta-analyses of epi-

sodic memory retrieval, the LPFC consistently emerged as

a core locus of activation in addition to the

hippocampus.55,56 The LPFC is involved in narrowing the

retrieval scope and supporting accurate situational

retrieval,57 and participants show increased prefrontal

activation58,59 or exhibit strengthened prefrontal FC to

memory retrieval networks60 to maintain better working

memory performance, suggesting a compensatory function

of the LPFC in working memory. Although the lack of

RAVLT scores in some HC patients in this study may have

affected the statistical power, T2DM patients did not show

a trend of memory impairment based on the current data.

Therefore, we speculated that the increased FC between the

pregenual ACC and bilateral LPFC may be a compensatory

mechanism for the damaged memory pathways. Interest-

ingly, our study showed that the decreased FC of the pACC

and left hippocampus were negatively correlated with the

increased FC of the pACC and left LPFC, further confirm-

ing our speculation. Deng et al.61 found that the prefrontal

cortex (PFC) reconfiguration increases in older adults and

tracked reconfiguration reductions in the medial temporal

lobe (MTL), with a “seesaw” relationship between the MTL

and PFC suggesting that strengthened PFC connectivity

may compensate for MTL deficits. This study implies that

this “seesaw” relationship may also exists in T2DM patients

without MCI, and that the LPFC may compensate for poor

hippocampal function in T2DM patients. Although several

previous neuroimaging studies62–64 have suggested a com-

pensatory mechanism in the brain function of T2DM

patients without MCI, none of them can provide strong

evidence. Our results may provide some imaging basis for

the compensatory mechanisms in the brain network in

T2DM, which have been difficult to prove for a long time.

In addition to participating in cognitive functions such

as memory and emotion, the pACC also interacts with

the sensorimotor network.37 The precentral gyrus, a clas-

sical sensorimotor area, plays an important role in the

processing of sensory and motor signals. Accordingly, we

hypothesized that increased FC of the pACC with the pre-

central gyrus in patients with T2DM may be related to an

abnormal sensorimotor network. In patients with DPN,

the precentral gyrus shows reduced gray matter volume

and abnormal neuronal activity,65,66 indicating a close

association between DPN and abnormal central

Figure 3. (A) Significant negative correlation between the CTT-2 score and the FC between the pACC and the left hippocampus in T2DM

patients (r = �0.410, p = 0.002). (B) The FC between the pACC and the left hippocampus was negatively correlated with the FC between the

pACC and left LPFC (r = �0.306, p = 0.022).
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sensorimotor function. In this study, in comparison with

patients without DPN, those with DPN showed increased

FC between the pACC and multiple sensorimotor regions

(including the precentral gyrus), which partly validates

our speculation. Rocca et al. found that patients with

peripheral neuropathy showed decreased FC within the

sensorimotor network but increased FC with multiple

other sensory and cognitive network regions, which may

reflect the mechanism of central adaptation to peripheral

injury.67 A previous study68 also reported that enhanced

FC between the pACC and the precentral gyrus was asso-

ciated with neurological symptoms in patients with spinal

cervical spondylosis with limb sensory deficits, suggesting

that this may be a compensatory mechanism designed to

preserve neurological function caused by spinal cord

injury downstream within the motor network. However,

whether the enhanced FC in this study is also a compen-

satory mechanism will require further analysis and verifi-

cation by collecting detailed clinical data and

neuroimaging findings at a later stage.

The latest view suggest that since the RSC anatomy and

dynamics are more consistent with roles in multiple sen-

sorimotor and cognitive processes, including sensory,

motor, memory, and visuospatial function, than with any

isolated function, this region can encode conjunctions for

these functions and provide a scaffold for intelligent

actions, such as navigation and perspective-taking.25 The

cerebellar Crus I is a part of the posterior cerebellum,

which facilitates such cognitive functions as language,

memory, spatial processing, and executive control and

serves as a crucial auxiliary region allowing the cerebrum

to perform higher cognitive functions.69,70 The RSC and

cerebellar Crus I are functionally complex and diverse but

not central to a particular cognitive function, so we

hypothesize that reduced FC between these regions may

only suggest a widespread but slight cognitive abnormality

in patients with T2DM. The posterior cerebellar regions

may be sensitive to T2DM-related damage71,72; moreover,

T2DM often presents with extensive cerebellar-cerebral

circuit impairment,70,73 and our findings further enrich

this theory. In addition, our findings showed significantly

higher CTT-1 scores in T2DM patients than in HCs, indi-

cating that these patients have impaired attention.

Although previous studies showed dysfunctional connec-

tions in the ventral attention network even in pre-diabetic

patients,74 the present study did not find abnormalities in

the attention network, which may be related to the differ-

ences in the study objectives and research methods.

Limitations

This study had several notable limitations. First, although

the missing RAVLT and SDMT scale scores for some HCs

prevented an accurate assessment of the presence of

impairments in memory and attention function in these

T2DM patients. However, since all T2DM patients com-

pleted all cognitive scales, the missing data did not greatly

affect the analyses of the correlation of neuroimaging

results with the neuropsychological scales. Second, T2DM

patients with complications were not excluded, and the dif-

ference in FC between pACC and precentral gyrus could be

attributed to the inclusion of 27 patients with DPN, which

introduced some bias in our results. However, the small

number of patients with diabetic nephropathy and retinop-

athy limited the impact of these conditions on the out-

comes. Third, the differences in the treatment regimens

and drugs for T2DM among patients may have introduced

some bias; however, such differences are difficult to avoid.

Conclusion

The cingulate gyrus shows dysfunctional connectivity in

multiple subregions before the appearance of structural

abnormalities in T2DM patients without MCI, and the

abnormal FC of the pACC with the bilateral hippocampus

and LPFC may involve a neural compensatory mechanism

for memory function. These findings reveal the role of

dysfunctional connectivity of the cingulate gyrus in early

cognitive impairment in T2DM and provide valuable

information and new directions for possible interventions

for the cognitive impairment associated with T2DM.
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